Publication Details

Causal structure learning for travel mode choice using structural restrictions and model averaging algorithm.
Posted on 14/12/16

Reference: MA Tai-Yu, CHOW Joseph Y.J., XU Jia. Causal structure learning for travel mode choice using structural restrictions and model averaging algorithm. Transportmetrica A: Transport Science, 2016.

Online First: 25/11/2016

DOI: 10.1080/23249935.2016.1265019

Authors:
Profile,
,
,

Abstract: This work contributes to develop a new methodology to identify empirical data-driven causal structure of a domain knowledge. We propose an algorithm as a two-stage procedure by first drawing relevant prior partial relationships between variables and using them as structure constraints in a structure learning task of Bayesian Networks. The latter is then based on a model averaging approach to obtain a statistically sound Bayesian network. The empirical study focuses on modeling commuters’ travel mode choice. We present experimental results on testing the design of prior restrictions, the effect of resampling size and learning algorithms, and the effect of random draw on fitted BN structure. The results show that the proposed method can capture more sophisticated relationships between the variables that are missing in both decision tree models and random utility models.

Keywords:

Project: Connecting

Linked publications to the project
Rechercher ?
Rechercher une publication

Newsletter

Receive our latest news by subscribing to our newsletters.

Contact

Maison des Sciences Humaines
11, Porte des Sciences
L-4366 Esch-sur-Alzette / Belval

Phone: (+352) 58 58 55 - 1
Fax: (+352) 58 58 55 - 700

Find an employee
Site map ›

Direction
Administration
Finances & Accounting
Human Resources
Communications
IT
Library